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Finslerian N-Spinors: Algebra
A. V. Solov'yov>? and Yu. S. Vladimirov?!
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New mathematical objects called Finsleritinspinors are discussed. The Finslerian
N-spinor algebra is developed. It is found that Finslefdwspinors are associated
with an N2-dimensional flat Finslerian space. A generalization of the epimorphism
SL(2,C)— 01(1, 3) to a case of the group SW( C) is constructed. Particular exam-
ples of FinsleriarN-spinors forN = 2, 3 are considered in detail.

1. INTRODUCTION

Spinors as geometrical objects were discovereE.tﬁ/artan in 1913 (Cartan,
1913). One decade later, Pauli (1927) and Dirac (1928) rediscovered spinors in
connection with the problem of describing the spin of an electron. From that time,
spinors are intensively used in mathematics and physics.

In the classical works (Brauer and Weyl, 1935; Cartan, 1938), a concept of
the Cartan’s 2-spinor was generalized and the theory of spinors in an arbitrary
n-dimensional pseudo-Euclidean space was constructed. In this paper, another
generalization of 2-spinors is proposed which leads to the Finslerian geometry.
Originally, such a generalization appeared within the so-cadi&dional theory
of space-timgSolov’yov, 1996; Vladimirov, 1996). However, the corresponding
mathematical scheme also has an independent meaning and will be presented
later.

In the next section, we shall develop a general algebraic formalism of
FinslerianN-spinors. The subsequent sections deal with the theory of the sim-
plest Finslerian 2- and 3-spinors. Conclusion contains some remarks concerning
the obtained results.
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2. GENERAL FORMALISM
LetFSN be a vector space ™ > 1 dimensions ove€ and

[vo...,] : FSN x FSN x ... x FSN — C (1)

N multiplicands

be a nonzero antisymmetri¢-linear functional orfSN. The latter means
(i) there exist,, 1o, . .., Ao € FSN such that
[0 M0, - -+, Aol = 20 # 0; 2)
(i) forany &, &,, ..., &y € FSN,
[ar &by - -+ &l = eabc[€1, &2, - - &N

wherea, b,...,c=1,2,..., N andeap.¢ is the N-dimensional Levi-
Civita symbol with the ordinary normalization..n = 1;
(|||) fOI‘ any 51, T]l, Ez, 772, ey EN' "]N € FSN andZ € C,

(ESTRRREE S o/ FYRREE IV Il [STRPRRE SRR 3V
[0 M- €N
(€10 Za - Enl =& &as -0 &

wherea takes the values 1, 2,., N.

We shall use the following terminology: The spde®" equipped with the
functional (1) having the properties (i), (i), and (iii) is called 8p&ace of Finslerian
N-spinors The complex numbeg] n, ..., A] is respectively called thecalar N-
productof the FinsleriarN-spinors¢, 7, ..., A € FSN.

It should be noted thagg, 0o, - .., Ao are linearly independent. Indeed, if
those were linearly dependent, one of the Finslefspinorsgy, ng, - .., Ao
would be a linear combination of the others and, in accordance with (ii) and (iii),
the scalaN-product Eg, 1, - - ., Ao] would be equal to zero. However, this is in
contradiction with (2). Thus§y, 1, - - ., Ao are linearly independent, i.e., form a
basis inFSN.

Letusintroduce the notatian = £y, e2 = 1o, . .., en = Ao/ 2. Itis evident
that the seteq, €y, . . ., en} is a basis iFSN. Because of (2) and (iii), its elements
satisfy the condition

[61, €2, ..., GN] =1 (3)

We shall call such a basgsnonical
Letel, €, ..., €y be arbitrary FinsleriaMN-spinors and

€, = Cgeb 4)
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be their expansions into the canonical bagis, €5, ..., €en); here a,b =
1,2,...,N,cd e C, and the summation is taken over the repeating iré¥ith
the help of (ii), (iii), (3), and (4), we find

[€], €, ..., €y] = detGy, (5)

where Gy = [|c2|l. Since linear (in)dependence €f, €, ..., €y is equivalent
to that of columns of the compleN x N matrix Cy, the set{e], €, ..., €y}
is a basis inFSN if and only if det Gy # 0. Moreover, it follows from (5) that
{€], €5, ..., €y} is a canonical one when detCG= 1. Thus, if Gy runs the group
SL(N, C) of unimodular complexN x N matrices, thefe;, €5, . .., €y} runs the
setE(FSN) of canonical bases iASN.

Let us express the scallr-product of FinsleriarN-spinors in terms of their
components with respect émycanonical basiges, . . ., en} € E(FSN). By using
(ii), (iii), (3), and the expansions = &2e,, 7 = n°ep, ..., A = A%, itis possible
to show that

[&,m, ..., Al = ap.cE®nP- A5, (6)

whereé, n,...,AeFSN, 2 42, ..., A C,a,b,...,c=1,2,...,N. In (6)
as well as in the following formulas of this paper, the summation is taken over all
the repeating indices. It is clear that the sc8aproduct (6) is zero if and only if
&, n, ..., Aare linearly dependent Finsleriddspinors.
Let us consider a mapping

S - E(FSN) N CNk+I+m+n,

{61, Cey EN} = S{El, . EN} = (Sblmbkc-lmq {61, ey EN}) (7)

ag---amdy--dy
such that
webily G g A S . PN :)
521...%(11..4(1'”{611 coer €N} = Gy GGy oo Cgdy - - didg) - - dg
fl...fkgl...gl
Sel~~emh1~~hn{€1’ ey 6N} (8)
for any two canonical basge;, . .., en}, {€], ..., ey} € E(FSN) whose elements

are connected by the relations (4). Here all the indices (both ordinary and dotted)

run independently from 1 tbl, the overlines denote complex conjugatidg,are

the complex numbers satisfying the conditias2 = 52 (5° is the Kronecker

symbol), det|ci|| = det||dZ|| = 1, andk, |, m, andn are nonnegative integers.
Every mapping (7), which possesses the property (8), is callEthge-

rian N-spintensor of a valenclf }]. The addition and multiplication of such

N-spintensors are defined in the standard wag. ahdT have the valencyj |]
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while U has the valencyf[d], then
S+ fer, . en) = 2% fer, .., en)

+ Tbl“'bk(:?l"'éjl

almamdlmdn{ela cee eN}

are the components of the suBn+ T while
b1---bk+p(:‘._1---('2!+q _ 1"'bké_1"'c|_
(S@U)E M0 fe, .. en) = S0 {en, . en)

U Pics1- Bt pCrs1--Ciig

€1,...,€
am+1“‘am+rdn+1"'dn+s{ L ! N}

are those of the produck® U with respect to an arbitrary canonical basis
{€1, ..., en} € E(FSN). Notice that all FinsleriarN-spintensors of the valency
[¥ 1] form an N¥H+™_dimensional vector space ov&r

Let Herm(N) be an N2-dimensional vector space ové& consisting of
Finslerian N-spintensorsX of the valency § § whose components satisfy the
Hermitian symmetry conditions

XPeq, ..., en} = XPle, . .., en) 9)
for any {e1, ..., en} € E(FSN). Besides, le{Eq, E1, ..., En2_1} be a basis in
Herm(N) and{ey, €2, . . ., en} be a canonical one iRSN. With eachiey, €5, ...,
ey} € E(FSN), we associate a bagigy, E, ..., E\._,} in Herm(N) such that

E™e), ..., ey} = EX, (10)
where EX° = EPley, ..., en} anda =0, 1,..., N2 — 1. In other words, (10)

defines the mappin@}, €5, ..., ey} = {Eg, Eb, ..., E\2_,} of E(FSM) into the
set of all bases in Herr\(). However,

Eles, ..., en) = CICSEL Yel, ..., e)) (11)
(compare it with (8)). Because of (10) and (11), we obtain
EXfes, ..., en} = ICSELS. (12)
Let us consider the following expansions:
E, = L(Cn);Ep, (13)

whereL(Cy)? e R anda, 8 =0, 1,..., N2 — 1. In order to findL(Cy)? as the
functions ofcg, it is useful to introduceN? FinslerianN-spintensorE® of the
valency P 9 such that

contraction E* ® Eg) = 4. (14)
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It is easy to show thaE* exist, are unique, ané&g, = E_g‘b with the notation
Ep. = Ef.{e1, ..., en}. Using (13) and (14), we can write

L(Cn)j; = contraction E* ® Ej). (15)
On the other hand, (12) implies
contraction E* ® E}) = Eg‘cc?c_gEgg. (16)
Thus, according to (15) and (16),
L(Cn)% = EgCcSE,°. (17)
LetE* = ||Egl, Es = IIE;°l, and B = | Ej%{es, ..., en} . Then, itis possible
to rewrite (12) and (17) in the matrix form respectively as
E; =Cn EsCy, (18)
and
L(CN)a = trace(E"CN EﬂCJNr), (19)
where the cross denotes Hermitian conjugating. However, it follows from (13) that
E; = L(Cn)3E, . Therefore,
CnEsCY = L(CN);EV. (20)
Taking into account (19) and (20), we immediately obtain
L(Bn CN)% = trace(E"‘BNCN E,gCﬁ BE) = L(BN)g I—(CN)E (21)

for any By, Cn € SL(N, C).

Let L(Cn) = IIL(Cn)EIl and FLN?, R) = {L(Cn) | Cn € SL(N, C)}. In
these terms, (21) means that R R) is a group with respect to the matrix
multiplication and the mapping

L : SL(N,C) — FL(N%4R), Cn+ L(Cn) (22)

is a group epimorphism so that, in particulafly) = 1n2(1n, 1nz are the identity
matrices of the corresponding orders) dr(d:ﬁl) = L(Cn) L Itis easy to prove
that the kernel of the epimorphism (22) has the form

kerL = {&% 1y k=0,1,..., N —1}. (23)

Let us return to the relations (13). Since by, ..., En2_1} and{Ej, ...,
E\2_,} are bases in Hern\), any vectorX € Herm(N) can be expanded in the
following two ways

X = X*E, = X?E}, (24)
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where X%, X’# € R. It is obvious thatX”’ = L(CHZX®. On the other hand,
XPeq, ..., en} = ciciX Y€y, ..., €y} or, what is the same,

IX*fex, ..., entl = CulIX"O(er, ..., e} ICK: (25)

Remembering that detyC= 1 and calculating the determinant of (25), we see that

det|| X™{ey, ..., en}ll = det| X 9], ..., ey} (26)
forany{ey, ..., ey} € E(FSM). Hence, (26) gives an invariant numerical charac-
teristic of the vectoX, which is naturally denoted by d&t Notice that deX =
det|| X"{eq, ..., en}]l € R as it follows from (9).

Thus, without loss of generality, it is possible to calculate Xewith re-
spect to the basige;, ..., en} € E(FSN). According to (24) and (26), deX =
det(X“E,) = det(X’E;). However, (18) implies deX”E}) = det(GyX"”
EsC;,) = det(X’’Ep). Therefore,

det X = det(X“E,) = det(X“E,). (27)
At the same time,
det(X“Ey) = Gup..y X*XF - X7, (28)

N multiplicands

where the real coefficient,...,, are completely determined by the choice of the
basis{Ey, ..., En2_1} in Herm(N). Because of (27) and (28),

detX = Gup.., XUXP ... XV = Gyp..,, XOXE ... X7, (29)

i.e., detX is forminvariantunder transformations of the group Mi{, R). Notice
that (29) is valid forany basis{Ey, ..., E\._,} whose elements are connected
with those of{Ey, ..., En2_1} by the relations (13).

Denoting deX by XN and using (28), we get (with respect to the basis

{Eo, ..., Enz_1})
XN = Gypoy XEXP . XY, (30)

whereGg. , are symmetric in all the indices and do not depend on the choice

of any canonical basis ifiSN. Thus, (30) correctly defines the structure of an

N2-dimensional flat Finslerian spaam Herm(\) so thatXN is theNth power of

the Finslerian length of the vectr € Herm(N) (Finsler, 1918). It should be noted

that, in general, the homogeneous algebraic form (30) is not positive-definite.
Inthe nexttwo sections, we shallillustrate the above formalism by the simplest

examples of Finslerian 2- and 3-spinors.
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3. FINSLERIAN 2-SPINORS

Let us consider the case whéh= 2. In this case, function (1) is the usual
symplectic scalar multiplication diS?. ThereforeFS? is isomorphic to the space
S? of standard 2-spinors (Penrose and Rindler, 1986) so that Finslerian 2-spinors
areidentical to Weyl ones. Here, we reproduce some essential information on
2-spinors which will be necessary in the next section of this paper.

First of all, for any{e1, €2}, {€;, €,} € E(FS?) and¢ = &3¢, = &€, € FS?,
(4) implies

£° = d3e®, (31)

where£2, &2 € C, c2d? = 82, anda, b, c = 1, 2 Of course, G, D, € SL(2,C)
and D, = C,* with the notation G = ||c3||, D, = ||d2||. In the same way, (6) gives

(£, m] = eant®n® = E'n° — £ (32)
for the scalar product of arbitrary 2-spingrandn with respectto abasig;, €,} €
E(FS?).

Let us assume
1
EOl:EO’a, Eﬂ:O’ﬁ, (33)

wherea, 8 =0, 1, 2, 30% = 0,, and

IS B ) B Y
(34)

are the identity and Pauli matrices. Since tractof;) = 233, this choice guaran-
tees correctness of (14). It follows from (13), (21), and (24) that

X' = L(D2)§X” (35)
for any 4-vectorX € Herm(2). Using (19), (33), and (34), we obtain

L(D,)% = %trace(a"‘Dzaﬂ D7) (36)
or, in the explicit form,
L(D2)g = %(dlld_-l'1 +d3dl + d2d2 + d2d2),
L(D)R = 2 (A + G2 + ol + G3a7),
L (02 = 5 (630 + 03 — dfal — ci),
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1

(028 — 21l + 62 - ol - )

1 .— — — —
L(D2)5 = 5 (didf + dfd} + djd? + o)),
L(D2); = %(dlld_-z'2 + d2d! + djd2 + dZd?),
L(D2)} = 5(d; + 5 — afaf - ofa)
1
2
i
2

L(D2)5 = 5 (did + dfd] — djd? — dd),

L(D2)3 = - (did? — d?d? + did? — d2d}),

L(D2); = ié(d%d_-% — dfd] + djf — didl),
L (D2 = (A + ool - o — e,
L (D2 = 5 (61 — 2 — afe? + e,
L(D2) = (] — o + o] - cge),
L(D) = %(dlld_-zi — d20? + did? — d2d?),
L(D2)3 = 1 (dl — oo — ol + o),

1 — — — —
L(D2)§ = 5 (did} — d3d] — dfd? +- djc). (36a)

In addition, (28), (30), (33), and (34) imply

X2 = Gos X XP = (X9% — (X3 — (X3 — (X3’ (37)
Because of (29) and (37), Herm(2) is isomorphic to the Minkowski space,
FL(4,R) = 01(1, 3), and (22) coincides with the known 2-to-1 epimorphism
SL(2,C) — 0Ol (1, 3) (Penrose and Rindler, 1986).

LetFS? be the realification df'S? (see the book (Kostrikin and Manin, 1989)

for the detailed information on the general realification procedure). Wﬁgjs

a four-dimensional vector space ofand its elements are Majorana 4-spinors.
Indeed, setting

El=g gy, =8k, =g i, 2=87 g, (38)
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we obtain
£E= EaEa = %’éel — éﬂ%l €1+ EH%EZ — §§I €,
€=t =fpe; — Elie) + 576 — Eilie) (39)
for any {e1, €2}, {€}, €,} € E(FS?) and & € FS?; here&l, &0 € R (i, j = 1, 2,
3, 4). It follows from (39) thates, —i ey, €2, —i €2} and{e;, —ie}, €5, —ie,} are
bases iff'SZ. Moreover, the substitution of (38) into (31) provides
i = M(D2)j&L, (40)
whereM(D2); € R and have the form
1— 1—
M(D2); = E(dll +di),  M(Dy)i= E(df +di),
i — i —
M(D2); = é(dll —di), M(Dpj;= E(df —df),
1— 1—
MD2)3 = 5(d +3).  M(D2)3= 5 (cf + ),
— i —
M(D2); = 5(dj —d3),  M(D2)j = E(dzz - d3),
MO = 5(dt — ). M(D2)} = 3(d2 — &),
N 1 J—
M2 = 5(di +di),  M(D2)3 =5 (df +df),
— i —
M(D2)5 = 5(dz =), M(D2)s = 5(d — ),
1 — 1 —
M@2); = 5(d3 +df),  M(D2) = 5(d} +3). (41)
It is evident that the matrix group Maj(4=) {|| M(Dz)' || | D2 e SL(2 C)} is iso-

morphic to SL(2,C). Finally, usmgn = UR - Ir;R, n? = 77]R — |;7R, and (38),

we can rewnte (32) as¢[n] = EySn —i&n, where& = (&3, &2, &2, &) and
n= % n3 n]R, ng)" are column matrices, theT” mark denotes the matrix
transpositioné = £ "% is a row matrix, and

0 0i O i 0 0 0 0i 00
o [0 oo =i . lo - oo , i ooo

V=15 00 ol Y lo o —i of" Y Sloooil
0 i 0 0 0 0 0 i 00i O
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0 0 —-i O 0 -1 0 O

0 0 0 i 1 0 0 O
3 _ 5_.0.,1.2 3 _

0O i 0 O 0O 0 1 O

are Dirac matrices in a Majorana representation (Majorana, 1937), which satisfy
the standard conditions*y# + y#y« = 2g*# with (g*f) =diag (1,-1, -1, —1).

4. FINSLERIAN 3-SPINORS

In this section, we consider the nontrivial case of FinsleNasapinors when
N = 3. Besides, the algebraic structure of the group FIRPis also described
here.

Let us begin with the following remark. For ary, €3, €3}, {€], €5, €5} €
E(FS®) and & = £%€, = £}, € FS®, (4) implies £ = d2&®, where£2, &P e
C,cAd? =42, anda,b,c=1,2,3. It is clear that & D3 € SL(3,C) and
D; = C3‘l with the notation @ = ||c}||, D3 = ||d¢|. In the same way, (6) gives
[€, 1, ¢] = eanct®nPCC for the scalar 3-product of arbitrary Finslerian 3-spinors
£, n, and¢ with respect to a basig, €, €3} € E(FS®).

By analogy with the previous section, we set

1
A

E” = 2)\sz EB = )"Ba (43)

whereA, B=0,1,...,8,1% = Aa (A +#8),18 = 24g, and

100 010 0 —i O
rw=(0 10|, wm=[(100], wxn=[i 0 o,

000 000 0 0 0

1 0 0 00 1 00 —i
am=(0 -1 0|, wm=|000], i=|00 0],

0 0 O 100 i 0 0

000 00 O 000
xw=[00 1], ax=|00 -], xrx=|0 0 0] @9

010 0i O 001

(A1, A2, ..., A7 coincide with the corresponding Gell-Mann matrices). Since trace
(A*rg) = 255, the choice (43) guarantees correctness of (14). It follows from (13),
(21), and (24) that

X'A = L(D3)AX"B (45)
for any 9-vectorX € Herm(3). Using (19), (43), and (44), we obtain

1
L(D3)g = Etrace(kAD3ABD§’). (46)
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In addition, (28), (30), (43), and (44) imply
X3 = GasrXAXBX! = [(X9)? — (X — (X))” — (X3)]X®
— XOLXA? + (X5)° + (X + (XT)]
+ 22X XAXC 4+ X5XT] + 2XP[X5X® — X*X]
+ XX+ (X0 = (X8 — (X)), 47)

Because of (29), the Finslerian “scalar cube” (47) is forminvariant under the trans-
formations (45) and (46) of the group FL(R).

It is more or less clear that any matiD e SL(3,C) with &2 # 0 can be
represented in a form of the product

Ds = DPDPDEDY, (48)
where
dl dl 0 10 dl
DY =|d? d2 of, DP=|o0 1 d?{,
0 0 1 00 1
1 0 0 d 0 0
pP=(0 1 0], D=0 d o (49)
@ &3 1 0 0 d?

are SL(3,C) matrices too. Because of (21), (48), and (49), we obtain the decom-
position

L(Ds) = L (D)L (DY) L (DF) L (DF) (50)

of the corresponding FL(®) matrix L(D3) Thus, (50) reduces a general FLI9,
transformationX’A = L(Dg)AXB to a composition of four simpler ones induced
by the matrices (49). These FL(®) transformations will be explicitly described
later.

Let %" = X3 (i =1, 2, 3,4). Then, with the help of (45) and (46), the
FL(9,R) transforma'uonx/A L(D(l))’*xB is written in the following form:

= L(D)§ X’
@:M@m%,
X8 = X8, (51)

wherea, 8 =0,1,2,3and, j =1, 2, 3, 4. Itis easy to see that the first line of
(51) coincides with the Lorentz transformation (35), (36), (36a) of a 4-vettor
while the second line is the transformation (40), (41) of a Majorana 4-sgjnor
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Therefore, the transformations (51) form a 6-parametric non-Abelian subgroup of
FL(9, R).

Letd} = ¢! —ie?, d3 = ¢ — i &* be a parametrization of the complex matrix
D(Z) from (49) Introducmg the real column matrices= (g1, &2, &3, %7, & =
(X4 X5, X8, X7 and usmg (42), (45), and (46), we can write the FLE9,
transformationX’ = L(D?)AX® as

1
X% = X*+ey“E + EE)/“EXS,

§=&+eX5
X"® = X8, (52)

wherea =0, 1, 2, 3 and = ¢ y°. Sincee?, £2, £3, ¢* € R, the transformations
(52) form a 4- parametric Abelian subgroup of FLE9,

Letd? = «3 —ix? d3 = —«! + ix? be a parametrization ofthe complex ma-
trix DY) from (49). Introducmg the real column matrices= (k%, k2, k3, k)7,
£ = (X4 X5, X8, X")T and using (42), (45), and (46), we write the FL®)
transformationX’ = L(D))AX®B as

X = X%,
é:/ = _igaﬂyakxﬁ + ‘i:y
X'® = gupiey i XP + 2iKce + X8, (53)

where o, 8 =0,1,2,3, k =« 'y% and @) = diag(1,—1,-1,-1). Since
k2, k3, k* € R, the transformations (53) form a 4-parametric Abelian subgroup
of FL(9, R).

Letd = |d|€¥ # 0be a parametrization of the complex matriirom (49).
Using (45) and (46), we represent the FLIEY transformationX’ = L (D$”)A X8
in the following form:

x/a( — |d|2xa,

X4 d- cos sin3p) /X4
(X’5> = 1d] (—sin&p c0530> <X5>’
X dl- cos sin3p) /X6
<X’7> = 1d] (—sin&p c0330> <X7>’

X8 = |d|74X¢, (54)
whereax =0, 1, 2, 3. Sinced| > 0 andg € R, the transformations (54) form a
2-parametric Abelian subgroup of FL(R).

Thus, all of the four FL(9R) transformations corresponding to the ma-
trices of the decomposition (50) have been explicitly described in (51), (52),
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(53), and (54). Finally, with the above notation, it is possible to rewrite (47) as
X2 = Qup XU XPXE — g,p X EyPE.

5. CONCLUSION

In the present paper, we have considered algebraic aspects of the Finslerian
N-spinor theory. We formulated the general definitions of a Finslexaspinor
and FinsleriarN-spintensor of an arbitrary valency. It was shown that Finslerian
N-spintensors of the valency f] were closely associated with tiN?-dimensional
flat Finslerian space HermN(). The metric on Hernl{|) was characterized by the
homogeneous algebraic form (30) of théh power. We also constructed the gen-
eralization (22) of the well-known epimorphism SL@2) — Ol(l, 3) and found
that its kernel consisted of the scalar matrices (23). In particular, it turned out
that Finslerian 2-spinors coincided with standard Weyl spinors. In this connection,
we recalled some essential information on Majorana 4-spinors as well. Finally, we
considered properties of Finslerian 3-spinors and described the algebraic structure
of the group FL(9R).

After this article had already been written, we learned about the works of
Finkelstein (1986) and Finkelste@t al. (1986) in whichhyperspinorsand some
oftheir properties were considered. David Finkelstein’s hyperspinors actually coin-
cide with FinsleriarN-spinors for which we have developed the detailed algebraic
theory here. We are grateful to Andrei Galiautdinov for attracting our attention to
the works on hyperspinors.
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